Set Implicit Arguments.
Require Import List Omega std calculus
higher_order_unification nth_order_unification.

Enumerability

Terms, Types and Contexts

Section ListEnumerability.
  Variable (X: Const).

  Hypothesis (enumX: enumT X).

  Fixpoint L_exp (n: nat) : list (exp X) :=
    match n with
    | 0 => nil
    | S n => L_exp n
                  ++ [var x | x L_T nat n]
                  ++ [const c | c L_T X n]
                  ++ [lambda s | s L_exp n]
                  ++ [app s t | (s, t) (L_exp n × L_exp n)]
    end.

  Global Instance enumT_exp: enumT (exp X) := { L_T := L_exp }.
  Proof.
    - eauto.
    - induction x as [y|c|s| s IH1 t IH2].
      + destruct (el_T y). exists (S x). cbn.
        in_app 2. now in_collect y.
      + destruct (el_T c). exists (S x). cbn.
        in_app 3. now in_collect c.
      + destruct IHs. exists (S x). cbn.
        in_app 4. now in_collect s.
      + destruct IH1 as [x1], IH2 as [x2]. exists (S (x1 + x2)). cbn.
        in_app 5. in_collect (s, t); eapply cum_ge'; eauto.
  Qed.

  Fixpoint L_type (n: nat) : list (type) :=
    match n with
    | 0 => nil
    | S n => L_type n
                   ++ [typevar x | x L_T nat n]
                   ++ [A B | (A, B) (L_type n × L_type n)]
    end.

  Global Instance enumT_type: enumT type := { L_T := L_type }.
  Proof.
    - eauto.
    - induction x as [beta|A IH1 B IH2].
      + destruct (el_T beta). exists (S x). cbn.
        in_app 2. now in_collect beta.
      + destruct IH1 as [x1], IH2 as [x2]. exists (S (x1 + x2)). cbn.
        in_app 5. in_collect (A, B); eapply cum_ge'; eauto.
  Qed.

Typing Proofs

  Fixpoint L_typingT Gamma s A n : list (Gamma (s: exp X) : A) :=
    match n with
    | 0 => nil
    | S n => L_typingT Gamma s A n ++
                      match s as s return list (Gamma s : A) with
                      | var i => [typingVar Gamma i H where H: nth Gamma i = Some A]
                      | const c => [cast (typingConst Gamma c) H where H : ctype X c = A]
                      | lambda s => match A with
                              | typevar beta => nil
                              | A B => [ typingLam H | H L_typingT (A :: Gamma) s B n]
                              end
                      | app s t =>
                        [typingApp H1 H2 | (H1, H2) (L_typingT Gamma s (A1 A) n × L_typingT Gamma t A1 n) & A1 L_T n]
                      end
    end.

  Scheme typing_strong_ind := Induction for typing Sort Prop.

  Global Instance enumT_typing Gamma (s: exp X) A: enumT (Gamma s: A) := { L_T := L_typingT Gamma s A }.
  Proof.
    - eauto.
    - intros x.
      induction x using typing_strong_ind.
      + exists 1. cbn. destruct dec; intuition. in_app 1. f_equal.
        eapply Eqdep_dec.inj_pair2_eq_dec. eapply eq_dec. now destruct e, e0.
      + exists 1. cbn. destruct dec; intuition; cbn. left.
        unfold cast; rewrite <-Eqdep_dec.eq_rect_eq_dec; eauto. decide equality. decide equality.
      + edestruct IHx as [m]. exists (S m); cbn.
        in_app 2. now in_collect x.
      + edestruct IHx1 as [x1'], IHx2 as [x2'], (el_T A) as [x3'].
        exists (S (x1' + x2' + x3')); cbn; in_app 3.
        eapply in_flat_map. exists A. split.
        2: in_collect (x1, x2).
        all: eauto using cum_ge'.
  Qed.

  Fixpoint L_typing n : list (ctx * exp X * type) :=
    match n with
    | 0 => nil
    | S n =>
      L_typing n ++ [(Gamma, s, A) | (Gamma, s, A) (L_T n × L_T n × L_T n), |@L_T (Gamma s : A) _ n| <> 0]
    end.

  Lemma enum_typing:
    enum (fun '(Gamma, s, A) => Gamma (s: exp X) : A) L_typing.
  Proof with eauto using cum_ge'.
    split; eauto.
    intros [[Gamma s] A]; split.
    - intros H. destruct (el_T Gamma) as [x1], (el_T s) as [x2], (el_T A) as [x3], (el_T H) as [x4]. exists (S (x1+x2+x3+x4)); cbn.
      in_app 2. in_collect (Gamma, s, A).
      1 - 3: eapply cum_ge'; eauto; omega.
      eapply dec_decb. eapply cum_ge' with (m := x1 + x2 + x3 + x4) in H3; eauto.
      destruct (@L_T (Gamma s : A) _ _); cbn; eauto.
    - intros [m H]; induction m in Gamma, s, A, H |-*; cbn in *. eauto.
      inv_collect; injection H; intros; subst. eapply decb_dec in H1; intuition; subst.
      destruct (@L_T (Gamma s : A) _ m); intuition.
  Qed.

  Fixpoint L_uni (n: nat) : list (uni X) :=
    match n with
    | 0 => nil
    | S n => L_uni n ++ flat_map (fun '(Gamma, s, t, A) => [@Build_uni _ Gamma s t A H1 H2 | (H1, H2) (L_T n × L_T n)])
                  [(Gamma, s, t, A) | (Gamma, s, t, A) (L_T n × L_T n × L_T n × L_T n)]
    end.

  Global Instance enumT_uni:
    enumT (uni X) := {L_T := L_uni}.
  Proof with eauto using cum_ge'.
    - eauto.
    - intros [Gamma s t A H1 H2].
      destruct (el_T Gamma) as [x1], (el_T s) as [x2], (el_T t) as [x3], (el_T A) as [x4], (el_T H1) as [x5], (el_T H2) as [x6].
      exists (S (x1 + x2 + x3 + x4 + x5 + x6)); cbn. in_app 2.
      eapply in_flat_map. exists (Gamma, s, t, A). intuition.
      + in_collect (Gamma, s, t, A); eapply cum_ge'; eauto;omega.
      + in_collect (H1, H2)...
  Qed.


  Fixpoint L_subst (tau: fin -> exp X) (n: nat) : list (ctx * (fin -> exp X) * ctx) :=
    match n with
    | 0 => nil
    | S n => L_subst tau n
                    ++ [(Delta, tau, nil) | Delta L_T n]
                    ++ [(Delta, s .: sigma, A :: Gamma) | ((Delta, sigma, Gamma), (Delta', s, A)) (L_subst (S >> tau) n × L_typing n), Delta = Delta']
    end.

Substitutions

  Lemma enum_substs tau:
    enum (fun '(Delta, sigma, Gamma) => Delta (sigma: fin -> exp X) : Gamma /\ forall x, x >= | Gamma | -> sigma x = tau x) (L_subst tau).
  Proof.
    destruct enum_typing as [_ E'].
    split; eauto; intros [[Delta sigma] Gamma]; split.
    - intros [H1 H2].
      induction Gamma as [| A Gamma] in sigma, tau, H1, H2 |-*.
      + destruct (el_T Delta) as [x]; exists (S x); cbn.
        in_app 2. in_collect Delta; eauto. repeat f_equal. symmetry; fext; intros; eapply H2; cbn; omega.
      + specialize (IHGamma (S >> tau) (S >> sigma) ); mp IHGamma; [| mp IHGamma]; eauto.
        * intros ???. now eapply H1.
        * intros; unfold funcomp; eapply H2; cbn; omega.
        * assert (Delta sigma 0 : A) by eauto.
          specialize (E' (Delta, sigma 0, A)); cbn in E'. eapply E' in H as [x1].
          destruct IHGamma as [x2]. exists (1 + x1 + x2); cbn.
          in_app 3. in_collect ((Delta, S >> sigma, Gamma), (Delta, sigma 0, A)); eauto using cum_ge'.
          repeat f_equal; fext; now intros [].
    - intros [m H]; induction m in tau, sigma, Gamma, H |-*; cbn in H; eauto.
      inv_collect; try injection H; intros; subst; eauto.
      1 - 2: eapply IHm in H; intuition.
      + intros []?; cbn; discriminate.
      + eapply decb_dec in H1; subst. eapply typingSubst_cons.
        eapply IHm; eauto. eapply (E' (c, e, t)). eauto.
      + eapply decb_dec in H2; subst. destruct x; cbn in H0; try omega; cbn.
        edestruct IHm as [_ ->]; eauto; omega.
  Qed.

  Definition Uextended '(I, Delta, sigma) :=
    Delta sigma : @Gamma X I /\ sigma s sigma t /\ forall x, x >= |Gamma| -> sigma x = var x.

  Fixpoint L_Uextended (n: nat) : list (uni X * ctx * (fin -> exp X)) :=
    match n with
    | 0 => nil
    | S n => L_Uextended n ++ [(I, Delta, sigma) | (I, (Delta, sigma, Gamma)) (@L_T (uni X) _ n × L_subst var n ),
                                  Gamma = Gamma /\ xi n (sigma s) <> None /\ xi n (sigma t) <> None /\ xi n (sigma s) = xi n (sigma t)]
                 
    end.

  Lemma enum_unification' : enum Uextended L_Uextended.
    split; eauto.
    intros [[I Delta] sigma]. unfold Uextended; cbn; split.
    - intros (H3 & H4 & H5). destruct (el_T I) as [x1].
      destruct (enum_substs var) as [_ E].
      specialize (E (Delta, sigma, Gamma)); cbn in E; destruct E as [[x2 E] _]; [intuition|].
      assert ({ s' | (sigma s) s' }) as [s' E1] by
            (eapply compute_evaluation_step, termination_steps, preservation_under_substitution; eauto using H1).
      assert ({ t' | (sigma t) t' }) as [t' E2] by
            (eapply compute_evaluation_step, termination_steps, preservation_under_substitution; eauto using H2).
      eapply xi_correct in E1 as E1'; destruct E1' as [x3];
        eapply xi_correct in E2 as E2'; destruct E2' as [x4].
      exists (S (x1 + x2 + x3 + x4)); cbn. in_app 2.
      in_collect (I, (Delta, sigma, Gamma)).
      + eapply cum_ge'; eauto; omega.
      + eapply cum_ge'; eauto; omega.
      + eapply xi_monotone with (m := x1 + x2 + x3 + x4) in H0; [|omega].
        eapply xi_monotone with (m := x1 + x2 + x3 + x4) in H1; [|omega].
        eapply dec_decb; intuition; try congruence.
        rewrite H0, H1. f_equal. destruct E1, E2.
        rewrite H2, H7 in H4. eapply equiv_unique_normal_forms; eauto.
    - intros [m H]; induction m; cbn in H; eauto.
      eapply (inhabited_ind id).
      inv_collect; injection H; intros; subst.
      eapply decb_dec in H1. intuition; subst.
      destruct (enum_substs var) as [_ H'].
      specialize (H' (Delta, sigma, Gamma)) as [_ H']; cbn in H'.
      mp H'; eauto. eapply inhabits; intuition.
      destruct (xi m (sigma s)) eqn: Hs; intuition.
      destruct (xi m (sigma t)) eqn: Ht; intuition.
      injection H6 as <-.
      eapply equiv_huet_backward with (v1 := e) (v2 := e); eauto.
      all: eapply xi_correct; now (exists m).
  Qed.

End ListEnumerability.

Higher-Order Unification

Theorem enumerable_unification (X: Const): enumerable__T X -> enumerable (U X).
Proof.
  rewrite enum_enumT. intros [EX].
  eapply enumerable_iff with (P := fun I => exists Delta sigma, Uextended (I, Delta, sigma)).
  - intros [Gamma s t A ? ?]; unfold Uextended, U; cbn; split; intros [Delta [sigma []]].
    exists Delta; exists sigma; intuition.
    pose (tau x := if nth Gamma x then sigma x else var x). exists Delta; exists tau; intuition.
    unfold tau; intros ?? H'; rewrite H'; eauto.
    repeat rewrite subst_extensional with (sigma0 := tau) (tau0 := sigma); eauto.
    1 - 2: intros ? H'; assert (x dom Gamma) as H1 by eauto using typing_variables; unfold tau; now domin H1.
    unfold tau. now eapply nth_error_None in H1 as ->.
  - eapply projection with (p := fun x: uni X * ctx => exists sigma, let (I, Delta) := x in Uextended (I, Delta, sigma)).
    eapply projection with (p := @Uextended X).
    eapply enumerable_enum; exists (@L_Uextended X EX); eapply enum_unification'.
Qed.