Lvc.Coherence.AllocationAlgoCorrect
Require Import CSet Le Arith.Compare_dec.
Require Import Plus Util Map CMap Status Take.
Require Import Val Var Env IL Annotation Liveness Fresh MoreList SetOperations.
Require Import Coherence Allocation RenamedApart AllocationAlgo.
Set Implicit Arguments.
Require Import Plus Util Map CMap Status Take.
Require Import Val Var Env IL Annotation Liveness Fresh MoreList SetOperations.
Require Import Coherence Allocation RenamedApart AllocationAlgo.
Set Implicit Arguments.
Lemma regAssign_correct (ϱ:Map [var,var]) ZL Lv s alv ϱ' al
(LS:live_sound FunctionalAndImperative ZL Lv s alv)
(inj:injective_on (getAnn alv) (findt ϱ 0))
(allocOK:regAssign s alv ϱ = Success ϱ')
(incl:getAnn alv ⊆ fst (getAnn al))
(sd:renamedApart s al)
: locally_inj (findt ϱ' 0) s alv.
Proof.
intros.
general induction LS; simpl in *; try monadS_inv allocOK; invt renamedApart;
pe_rewrite; eauto 10 using locally_inj, injective_on_incl.
- exploit IHLS; try eapply allocOK; pe_rewrite; eauto with cset.
+ eapply injective_on_agree; [| eapply map_update_update_agree].
eapply injective_on_incl.
eapply injective_on_fresh;
eauto using injective_on_incl, least_fresh_spec with cset.
eauto with cset.
+ pe_rewrite. eauto with cset.
+ exploit regAssign_renamedApart_agree;
try eapply allocOK; simpl; eauto using live_sound.
rewrite H9 in *; simpl in ×.
econstructor; eauto using injective_on_incl.
× eapply injective_on_agree; try eapply inj.
eapply agree_on_incl.
eapply agree_on_update_inv.
rewrite map_update_update_agree; eauto.
pe_rewrite.
revert H5 incl; clear_all; cset_tac; intuition.
- exploit regAssign_renamedApart_agree;
try eapply EQ; simpl; eauto using live_sound.
exploit regAssign_renamedApart_agree;
try eapply EQ0; simpl; eauto using live_sound.
pe_rewrite.
simpl in ×.
exploit IHLS1; eauto using injective_on_incl.
rewrite H11; simpl. rewrite <- incl; eauto.
exploit IHLS2; try eapply EQ0; eauto using injective_on_incl.
eapply injective_on_incl; eauto.
eapply injective_on_agree; eauto using agree_on_incl.
rewrite H12; simpl. rewrite <- incl; eauto.
econstructor; eauto.
assert (agree_on eq D (findt ϱ 0) (findt ϱ' 0)). etransitivity; eauto.
eapply injective_on_agree; eauto. eauto using agree_on_incl.
eapply locally_inj_live_agree. eauto. eauto. eauto.
rewrite H11; simpl; eauto.
exploit regAssign_renamedApart_agree'; try eapply EQ0; simpl; eauto using live_sound.
pe_rewrite.
eapply agree_on_incl. eapply H13. instantiate (1:=D ∪ Ds).
pose proof (renamedApart_disj H9).
pe_rewrite.
revert H6 H14; clear_all; cset_tac; intuition; eauto.
rewrite H11; simpl. rewrite <- incl; eauto.
- exploit regAssign_renamedApart_agreeF;
eauto using regAssign_renamedApart_agree'. reflexivity.
exploit regAssign_renamedApart_agree;
try eapply EQ0; simpl; eauto using live_sound.
exploit IHLS; eauto.
+ eapply injective_on_incl; eauto.
eapply injective_on_agree; eauto.
eapply agree_on_incl; eauto. instantiate (1:=D).
rewrite disj_minus_eq; eauto. simpl in ×.
symmetry. rewrite <- list_union_disjunct.
intros. inv_zip H12. edestruct H8; eauto; dcr.
unfold defVars. symmetry. eapply disj_app; split; eauto.
symmetry; eauto.
exploit H7; eauto. eapply renamedApart_disj in H17.
eapply disj_1_incl; eauto. rewrite H16. eauto with cset.
+ pe_rewrite. etransitivity; eauto.
+
assert (DDISJ:∀ n DD' Zs, get F n Zs → get ans n DD' →
disj D (defVars Zs DD')).
{
eapply renamedApart_disj in sd. eauto using defVars_disj_D.
}
econstructor; eauto.
× {
intros. edestruct get_length_eq; try eapply H6; eauto.
edestruct (regAssignF_get (fst (getAnn x0) ∪ snd (getAnn x0) ∪ getAnn alv)); eauto; dcr.
rewrite <- map_update_list_update_agree in H21; eauto.
exploit H1; try eapply H19; eauto.
- assert (getAnn alv \ of_list (fst Zs) ∪ of_list (fst Zs) [=] getAnn alv).
edestruct H2; eauto.
revert H17; clear_all; cset_tac; intuition.
eapply injective_on_agree.
Focus 2.
eapply agree_on_incl.
eauto. rewrite <- incl_right.
rewrite disj_minus_eq; eauto.
eapply renamedApart_disj in sd.
simpl in ×.
rewrite <- H17. symmetry. rewrite disj_app. split; symmetry.
eapply disj_1_incl. eapply disj_2_incl. eapply sd.
rewrite <- H13. eapply incl_union_left.
hnf; intros ? A. eapply list_union_get in A. destruct A. dcr.
inv_get.
eapply incl_list_union; eauto using zip_get.
reflexivity. cset_tac.
edestruct H2; eauto; dcr. rewrite <- incl. eauto.
eapply disj_1_incl.
eapply defVars_take_disj; eauto. unfold defVars.
eauto with cset.
setoid_rewrite <- H17 at 1.
eapply injective_on_fresh_list; eauto.
eapply injective_on_incl; eauto.
eapply H2; eauto.
eapply disj_intersection.
eapply disj_2_incl. eapply fresh_list_spec. eapply least_fresh_spec.
reflexivity.
edestruct H8; eauto.
eapply fresh_list_unique, least_fresh_spec.
- edestruct H8; eauto; dcr. rewrite H17.
exploit H2; eauto; dcr. rewrite incl in H26; simpl in ×.
rewrite <- H26. clear_all; cset_tac; intuition.
- eapply locally_inj_live_agree; try eapply H17; eauto.
eapply regAssign_renamedApart_agreeF in H18;
eauto using get_drop, drop_length_stable; try reflexivity.
+ eapply regAssign_renamedApart_agree' in EQ0; simpl; eauto using live_sound.
etransitivity; eapply agree_on_incl; try eassumption.
× rewrite disj_minus_eq. reflexivity.
{
edestruct H8; eauto; dcr. rewrite H20.
rewrite union_comm. rewrite <- union_assoc.
symmetry; rewrite disj_app; split; symmetry.
- eapply disj_1_incl. eapply defVars_drop_disj; eauto.
unfold defVars. eauto with cset.
- eapply renamedApart_disj in sd; simpl in sd.
eapply disj_2_incl; eauto.
rewrite <- H13. eapply incl_union_left.
rewrite <- drop_zip; eauto.
eapply list_union_drop_incl; eauto.
}
× pe_rewrite.
rewrite disj_minus_eq. reflexivity.
{
edestruct H8; eauto; dcr. rewrite H20.
rewrite union_comm. rewrite <- union_assoc.
symmetry; rewrite disj_app; split; symmetry.
rewrite union_comm; eauto.
eapply renamedApart_disj in H10. pe_rewrite. eapply H10.
}
+ intros.
eapply regAssign_renamedApart_agree'; eauto using get_drop, drop_get.
+ intros. edestruct H8; eauto; dcr. rewrite H20.
exploit H2; eauto; dcr. rewrite incl in H27. simpl in ×.
revert H27; clear_all; cset_tac; intuition.
decide (a ∈ of_list (fst Zs)); intuition.
}
× eapply injective_on_agree; try eapply inj; eauto.
etransitivity; eapply agree_on_incl; eauto.
rewrite disj_minus_eq; eauto. simpl in ×.
symmetry. rewrite <- list_union_disjunct.
intros. inv_zip H14. edestruct H8; eauto; dcr.
unfold defVars. symmetry. eapply disj_app; split; eauto.
symmetry; eauto.
exploit H7; eauto. eapply renamedApart_disj in H18.
eapply disj_1_incl; eauto. rewrite H17. eauto with cset.
pe_rewrite. eauto.
Qed.
Require Import Restrict RenamedApart_Liveness LabelsDefined.
Theorem 8 from the paper.
One could prove this theorem directly by induction, however, we exploit that under the assumption of the theorem, the liveness information alv is also sound for functional liveness and we can thus rely on theorem regAssign_correct above, which we did prove by induction.Lemma regAssign_correct' s ang ϱ ϱ' (alv:ann (set var)) ZL Lv
: renamedApart s ang
→ live_sound Imperative ZL Lv s alv
→ bounded (Some ⊝ Lv \\ ZL) (fst (getAnn ang))
→ ann_R Subset1 alv ang
→ noUnreachableCode isCalled s
→ injective_on (getAnn alv) (findt ϱ 0)
→ regAssign s alv ϱ = Success ϱ'
→ locally_inj (findt ϱ' 0) s alv.
Proof.
intros.
eapply renamedApart_live_imperative_is_functional in H0; eauto using bounded_disjoint, renamedApart_disj, meet1_Subset1, live_sound_annotation, renamedApart_annotation.
eapply regAssign_correct; eauto using locally_inj_subset, meet1_Subset, live_sound_annotation, renamedApart_annotation.
eapply ann_R_get in H2. destruct (getAnn ang); simpl; cset_tac.
Qed.